

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 613571

Ecological trends in the Cantabria Sea ecosystem: A modeling approach including trophic controls

Lucía López-López¹, Izaskun Preciado^{1*}, Nina- Larissa Arroyo Hailuoto¹, José Castro², Pablo Carrera², Santiago Cerviño², Magdalena Iglesias³, Telmo Morato⁴, Isabel Muñoz¹, Enrique Nogueira², Elena Prado¹, Antonio Punzón¹, Camilo Saavedra², Francisco Sánchez¹, Alberto Serrano¹, Raquel Somavilla², María Ángeles Torres⁵

¹IEO, Promontorio San Martín s/n, 39004 Santander, Spain; ²IEO, Subida Radio Faro 50, 36390 Vigo, Spain; ³IEO, Muelle de Poniente s/n PO Box 291,07015 Palma de Mallorca, Spain; ⁴IMAR, University of Azores, Horta, Faial, Portugal; ⁵Centre of Marine Sciences, University of Algarve, Portugal ***izaskun.preciado@ieo.es**

Our aim in this work is to empirically determine trophic

Ecopath with Ecosim model (1994-2013)

controls on food web interactions and integrate this information in the EwE ecosystem model of the Cantabrian Sea. Using this modeling approach we explore the system's trophodynamics following the fisheries effort release of the last two decades, assessing the ecosystem evolution using trend indicators of its structure and health.

Annual diet data were used to investigate the trophic controls at key interactions. The predator-prey **interaction strength** is the fraction that a given prey represents from the total predator diet (measured in volume).

When the Pearson correlation value between predator biomass and diet variability was positive and statistically significant (p-value < 0.05), we assumed a top-down control of the interaction, while if the correlation value between prey biomass and diet variability was positive and statistically significant we assumed a bottom-up control.

With **34 functional groups** representing a compromise between common trophic guilds, life history characteristics and the amount of available information

- 16 fish groups
- 6 groups of benthic invertebrates
- 7 groups of pelagic invertebrates
- 1 of marine mammals
- 1 seabird group
- 1 primary producer
- 1 detritus group

We assigned the **vulnerabilities** based on the correlation value, $v_{ij} = 1$ if the interaction was bottom-up and $v_{ij} = 100$ if it was determined as top- down.

The **best model performance** was obtained when fishing pressure was introduced in the model forcing the simulation. The primary production anomaly, however, did not improve the model fit.

	Hypothesis	N	minSS	К	AIC	AICc	Better (%)		
1	Base model	880	514.2	0	-205.3	-205.3		1	
2	Base model + PP anomaly (4 sp)	880	508.1	4	-201.9	-201.9	-1.69		
3	Base model + Fishing pressure	960	524.4	0	-252.1	-252.1	22.77		
4	Base model + Fishing pressure + PP anomaly (4 sp)	960	517.3	4	-249.8	-249.8	21.63		

The model reproduced credibly biomass variability of high trophic level groups, but had limited ability to simulate that of mid- and low-trophic level groups. This suggest a strong top down control of the fishery on the fish predators, and higher variability (environmentally driven?) of the lower trophic levels.

The **ENA indices** (such as ascendency or AMI) displayed a relative maximum in the year

		-		-	-	-		-			
16 Small Dem Fish							1		100		
18 Anchovy				100						100	
21 Pelagic crab		1	1			1	1				
22 Zooplankton feeding shrimps			1	1							
23 Benthos-feeder decapods	100	100	1					1		1	
24 Detritus-feeder decapods		100									
25 Polychaetes			1								
26 Other Invert	100				1						
27 Migrating macrozooplankton	100										
29 Detritivorous supreabenthos	100										
30 Macrozooplankton		100			100						

2000 and a steep increase after 2005. This relative maximum seems to be caused by changes in the fishery effort around that year. The **mean trophic level indices** (MTL) showed a general increase along the time series. Only when setting the threshold in mTL \geq 3.25 this increase was not apparent (data not shown).

MareFrame Scientific Conference "Advances in Ecosystem-based Fisheries Management"

14th December 2017 Venue: Comics Art Museum - Brussels, Rue des Sables 20, 1000