(a)

hafrannsóknastofnun

MareFrame

Assessing a data challenged stock: a case study on
Shuttle Thread ling (Molva molva) in Icelandic waters
Bjarki Pór Elvarsson ${ }^{1}$, Guơmundur Pórǒarson ${ }^{1}$ and Jamie Lentin ${ }^{2}$
${ }^{1}$ Marine and Freshwater Research Institute, Reykjavik, Iceland ${ }^{2}$ Shuttlethread, Manchester, United Kingdom

The request

- In the autumn of 2016 the government of Icelandic requested the development of a harvest control rule (HCR) for the common ling
- In Iceland the HCR is typically formulated in terms of harvest rate (HR) on a predetermined reference biomass:

$$
T A C_{y / y+1}=H R_{M G T} B_{R e f, y}
$$

- This reference biomass is often formulated in terms of age (i.e. cod) or length (i.e. haddock)

The data challenged stock

- The common ling in Icelandic waters is fairly concentrated to the South-Western part of the shelf area
- Typically caught in a mixed fishery with other gadoids
- Historically low catches but have in recent years, concomitant with increase in survey biomass, increased substantially
- Until recently samples from commercial operations are few, and the total abundance in the survey ranges between 250 and 1000 individuals
- Relatively few age readings are available due to changes in age reading methods
- Reference biomass is commonly reported as the biomass of fish larger that 75 cm

The assessment tool

- Gadget is a shorthand for: Globally applicable Area Disaggregated General Ecosystem Toolbox
- Statistical framework for modelling marine ecosystems.
- Allows the creation of age-length structured forward-simulation models that can be coupled with an extensive set of data comparison and optimization routines.
- Designed as a multi-area, multi-fleet model, capable of including predation and mixed fisheries issues.
- Often used to model data challenged species, e.g. when data for traditional age-based assessment models are not available.

Data handling

- For modelling frameworks such as Gadget robust data handling is very important
- Here a specialized database system, MFDB, was used
- MFDB essentially stores the disaggregated data, handles all necessary aggregation and exports the data in the required format for Gadget
- All database interactions occurs from an R interface
- Implements a spatial bootstrap in a transparent manner

Locations of Ling samples in Icelandic waters by commercial and survey fleets in 2015 relative to the spatial subdivision on the Icelandic continental shelf area

Tools

All the tools are used here are available at:

- Gadget: http://www.github.com/hafro/gadget
- Rgadget: http://www.github.com/hafro/rgadget
- Models: http://www.github.com/fishvice/gadget-models

Database system: http://www.github.com/mareframe/mdfb

Steady state projections

- The proposed form for managment rule is $C_{y}=H R \times B_{75 \mathrm{~cm}}$
- No evidence of impaired recruitment and fishing mortality is considered to have been low
- Biomass reference points ($B_{\text {lim }}$ and $B_{p a}$) are based on assessment results
- Average recruitment follows the usual hockey stick recruitment function
- Variability in recruitment is based on a block bootstrap of estimated recruitment, block size of 6 consequtive years.
- $H R_{\text {msy }}$ is based on simulation with assessment error (lognormal with $\rho=0.8$, and σ as the CV of $B_{75 \mathrm{~cm}^{+}}$

Concluding remarks

- Compared to more data intensive methods (catch at age models) or data limited (i.e. stock production) the Gadget model used here synthesizes all available information of the dynamics of ling
- The coupling of a flexible database tools with R and the assessment tools proved to be very useful, and allows all the reproduction of the analysis on a later date
- A management plan based on a $H C R$ with $H_{m p}$ lower than $H_{m s y}$ was adopted in June 2017
- The rationale for a lower harvest rate than $H R_{\text {msy }}$ was simply higher SSB in the medium to long term with marginally lower catches ($<2 \%$)
- Compared with data rich species the intra year variations in catches is expected to be greater

Acknowledgements

The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 613571 - MareFrame

