Sensitivity study of the Icelandic Atlantis model

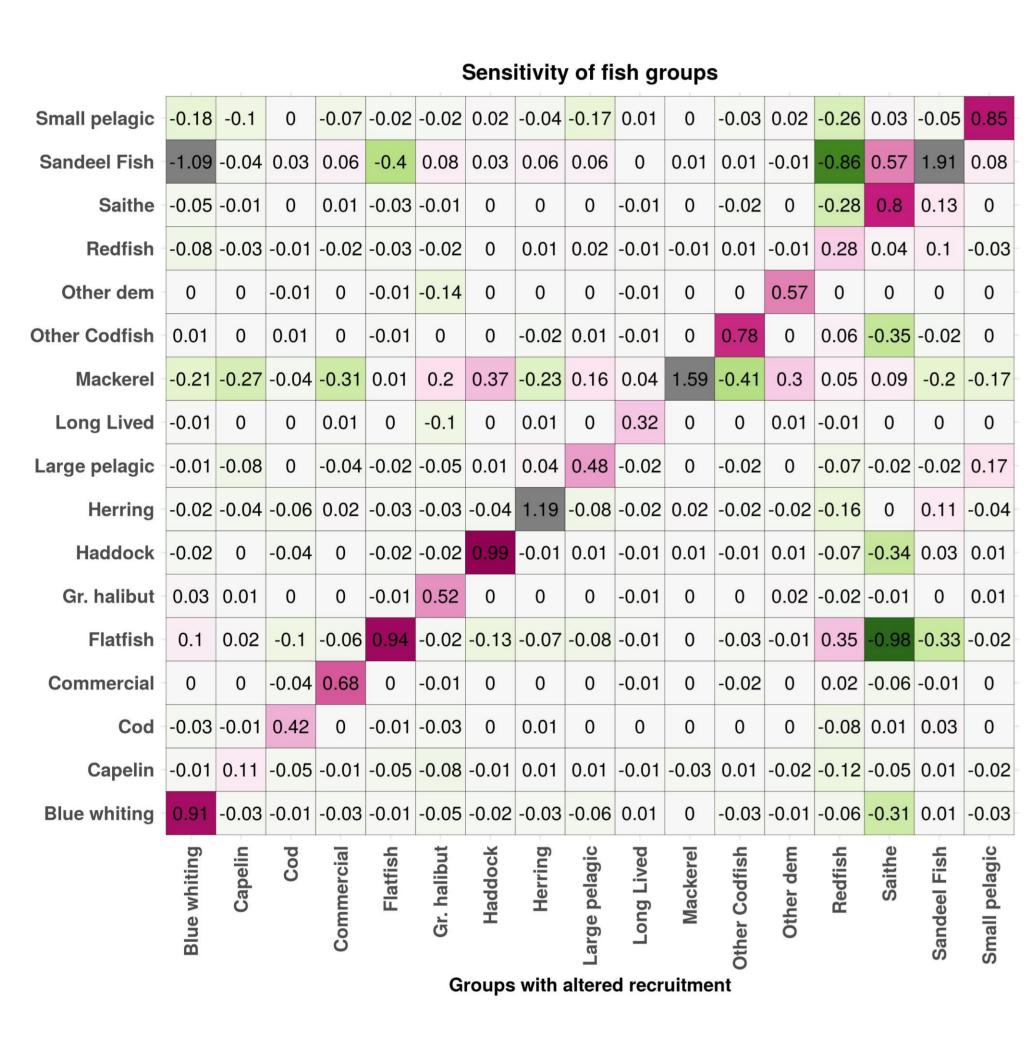
Erla Sturludóttir and Gunnar Stefánsson Science Institute, University of Iceland

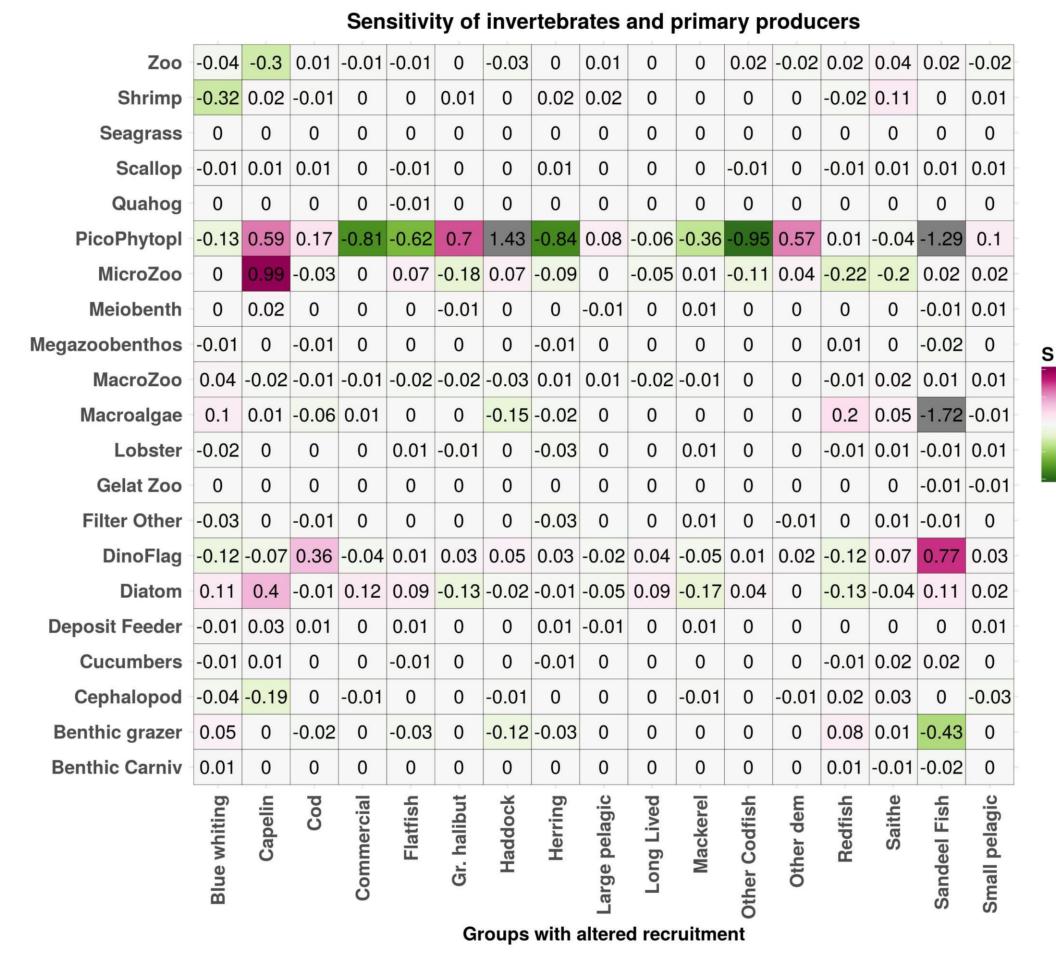
Introduction

- Sensitivity analysis of an ecosystem model can give insight into what parameters contribute to uncertainty in the output.
- It can also be helpful in understanding behaviour and functioning of the system.
- Sensitivity study of recruitment and growth parameters in the Icelandic Atlantis model was carried out.
- The Atlantis model
 - Oceanograpic, biology and fisheries model
 - 52 functional groups and 10 age classes
 - 52 spatial boxes and 7 layers

Methods

- Maximum recruitment (α) in the Beverton-Holt function was altered by ±20%
- $Rec = \frac{\alpha * SSB}{\beta + SSB}$
- The maximum growth rate (mum) in Holling II was altered by ±20% for zooplankton.
- Growth rate for phytoplankton altered by ±20%.
- Interactions between ZL, PS and PL studied.

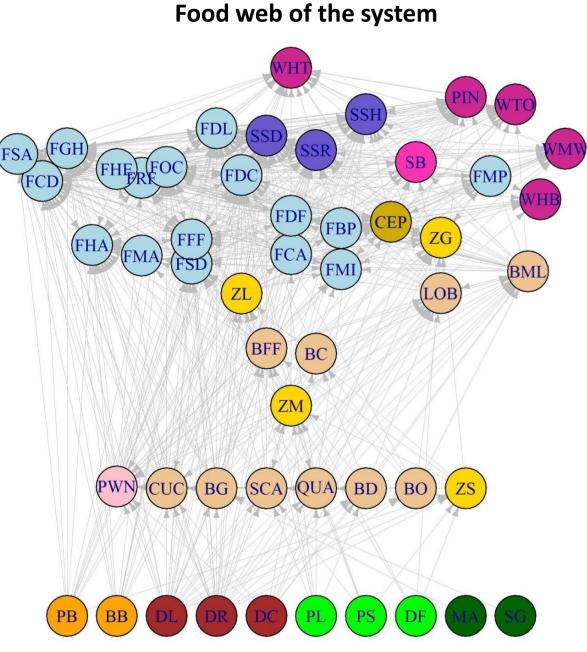

Measure of sensitivity


- Average biomass over the whole simulated period (65 years) used to measure sensitivity.
- Sensitivity of recruitment parameters measured with:

$$S_{ij} = \frac{V_i(1.2\alpha_j) - V_i(0.8\alpha_j)}{0.4V_i(\alpha_j)}$$

Sensitivity of growth parameters and their interactions measured with percentage change in biomass.

Sensitivity of recruitment parameters



Results

- Changing the recruitment of a group had usually the most effect on themselfs.
- Mackerel and sandeel were sensitive to changes in recruitment of other groups.
- Redfish and saithe had strong effects on many of the other groups.
- Cod which is a top predator with large population size did not have much effect on other groups.
- Capelin and sandeel had the most effect on the lower trophic levels
- Pico-phytoplankton was very sensitive to changes in recruitment.

Sensitivity of growth parameters

Cephalopods Bacteria Detritus

Description of code for model runs

ZL = Large zooplankton

PL = Diatoms

PS = Pico-phytoplankton

b = growth parameter as in the base run

d = growth parameter decreased

i = growth parameter increased

Example:

PSd_PLi_ZLb = Model run where growth parameter decreased for pico-phytoplankton, increased for diatoms and unchanged for large zooplankton.

	Sensitivity of fish groups										
Small pelagic	-25	47	22	-2	77	27	8	51			
Sandeel Fish	-29	44	-19	-48	57	-19	-49	17			
Saithe	-11	15	5	-11	16	4	-14	20			
Redfish	-33	64	20	-7	84	22	-6	54			
Other dem	-3	5	2	-1	6	2	0	4			
Other Codfish	-5	3	3	-2	6	4	1	5			
Mackerel	12	-44	26	27	-48	69	89	60			
Long Lived	-1	3	2	0	4	3	1	5			
Large pelagic	-11	26	26	12	34	37	29	47			
Herring	-6	2	0	-12	0	-6	-19	8			
Haddock	0	-7	-3	-4	-5	-4	-4	-5			
Gr. halibut	-7	17	10	3	23	9	5	16			
Flatfish	-8	3	9	9	12	16	25	10			
Commercial	-1	3	2	0	4	2	1	3			
Cod	-5	3	2	-5	4	1	-5	5			
Capelin	-13	24	51	20	55	59	43	78			
Blue whiting	-7	-22	15	10	-25	46	50	28			
	PSb_PLd_ZLb	PSb_PLi_ZLb	PSd_PLb_ZLb	Mod BSd_PLd_ZLb	n PSd_PLi_ZLb	PSi_PLb_ZLb	PSi_PLd_ZLb	PSi_PLi_ZLb			

Sensitivity of invertebrates and primary producers											
Zoo	13	-28	41	49	10	28	29	13	_		
Shrimp	-4	4	-8	-15	6	-4	-5	2	-		
Seagrass	0	0	0	0	0	0	0	0	_		
Scallop	-6	6	-7	-14	0	5	-5	6	_		
Quahog	-2	2	-2	-4	0	1	-2	2	-		
PicoPhytopl	17	-23	-84	-85	-95	312	349	260	-		
MicroZoo	-12	-15	502	505	399	-20	-13	-9	-		
Meiobenth	-7	17	-8	-14	10	5	-3	12			
Megazoobenthos	-1	2	-1	-1	1	1	0	1	%		
MacroZoo -	-35	116	51	32	118	5	-21	49	100 50		
Macroalgae	19	-57	0	26	-59	3	27	-43	0		
Lobster	-8	20	-5	-12	14	4	-4	11	-50		
Gelat Zoo	0	0	1	1	1	1	1	1	-10		
Filter Other	-4	5	3	0	6	6	1	7			
DinoFlag	-12	30	12872	12837	10243	-13	-26	5			
Diatom	12	28	3	18	5	-19	-34	-20			
Deposit Feeder	-10	22	-11	-23	16	5	-2	17	_		
Cucumbers	-5	4	-6	-10	0	2	-2	4			
Cephalopod	-26	173	81	48	255	40	18	119			
Benthic grazer	3	-13	0	7	-13	2	9	-11	-		
Benthic Carniv	-2	4	-2	-4	2	1	-1	3			
	PSb_PLd_ZLb	PSb_PLi_ZLb	PSd_PLb_ZLb	Mod PSd PLd ZLb	PSd_PLi_ZLb	PSi_PLb_ZLb	PSi_PLd_ZLb	PSi_PLi_ZLb			

Results

- Altering the growth parameter of ZL did not have much effect (not shown).
- Fish groups feeding on zooplankton were sensitive to changes in phytoplankton growth rate.
- Increasing the growth rate of PL had positive effects on all fish groups except mackerel and blue whiting.
- Decreasing the growth rate of PS had positive effects on dino-flagellates that otherwise became extinct.
- The sensitivity study shows the functioning of the system and will be helpful for further work with the Atlantis model.

Mammals

Seabird

Shark/Skates