Ecosystem model of Icelandic waters using the Atlantis modelling framework

<u>Erla Sturludottir</u>, Christopher Desjardins, Bjarki Elvarsson Kai Logemann, Gudrun Marteinsdottir and Gunnar Stefansson

> Advances in Ecosystem-based Fisheries Management 14th December 2017 Brussels, Belgium

MARINE & FRESHWATER RESEARCH INSTITUTE

Atlantis

- Simulates the entire ecosystem.
- Ecosystem model
- Fisheries model
- Sampling and assessment model
- Management model
- Socio-economic model

The model area

The biology model

- Functional groups
- Consumption
- Predation
- Growth
- Reproduction
- Movement
- Migration

The functional groups

- 51 functional group
 - o 25 vertebrates
 - 16 fish
 - 3 shark/skates
 - 5 mammal
 - 1 seabird
 - 16 invertebrate groups
 - **5 primary producers**
 - 2 bacteria
 - o 3 detritus

The biology model

Vertebrates

- **10 age classes**
 - Numbers per age within ageclass
- \circ Weight in mg N
 - Reserved weight
 - Structural weight

Invertebrates

- \circ 2 ageclasses
- Biomass pools
 mg N m⁻³

Consumption

- Holling type II
- Gape limitation
- Prey availability

$$Q_{ij} = \frac{a_{ij} \cdot Prey_i \cdot C_j}{1 + \frac{C_j}{\mu_j} \sum_k Prey_k \cdot \epsilon_{ij} \cdot a_{ij}}$$

Prey density

The food web

Reproduction

- Beverton Holt
- Fixed number per adult

$$N_{\rm Rec} = \frac{SSB \cdot \alpha}{\beta + SSB}$$

Migration and movement

- Horizontal movement
 - Migration within the model
 - Migration out of the model area
- Vertical movement
 - Night and day

Spatial distribution

The fisheries model

- Fisheries
 - Multiple fleets
 - Gear
 - Target
 - Selectivity

Fishing in Atlantis

Skill assessment

$$r = \frac{\sum_{i=1}^{n} (O_i - \bar{O})(P_i - \bar{P})}{\sqrt{\sum_{i=1}^{n} (O_i - \bar{O})^2 \sum_{i=1}^{n} (P_i - \bar{P})^2}}$$

$$RI = exp \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(\log \frac{O_i}{P_i}\right)^2}$$

$$MEF = \frac{\sum_{i=1}^{n} (O_i - \bar{O})^2 - \sum_{i=1}^{n} (P_i - O_i)^2}{\sum_{i=1}^{n} (O_i - \bar{O})^2}$$

Cod

Haddock

Saithe

Capelin

Herring

Use of Atlantis

- Supporting tool for EBFM
 - Understanding
 - Scenarios
 - Fishing pressure
 - Effect of discards
 - Manangement strategy evaluation
 - Operating model

Poster Session

Can EwE mimic the Atlantis ecosystem?

Acknowledgement

This project has received funding from the European Union's Seventh Framework Programme for research, technological developement and demonstration under grant agreement no. 613571 and from the European Commission's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 634495 for the project Science, Technology, and Society Initiative to minimize Unwanted Catches in European Fisheries (MINOUW).

