

Ecosystem Resilience Managing our fisheries for a sustainable future

Lyne Morissette & Michaela Aschan

University of Tromsø

Resilience of marine ecosystems

- The capacity of a system to absorb or withstand perturbations and other stressors such that the system remains within the same regime, essentially maintaining its structure and functions;
- Erstialolles celtilierytsterst eladoaadjetspeanoithedeoalssparethtestsall distilientmestalloid keep its identity.

Resilience

Changing thresholds

Thresm

Resilience at risk in Europe

If record high ocean temps continue ...

The importance of biodiversity

- In Ecopath with Ecosim, it can be translated into:
 - System Omnivory Index
 - Ascendency
 - Shannon diversity index
 - o Keystoness

Ecological Monographs, 85(1), 2015, pp. 29-47 © 2015 by the Ecological Society of America

> Keystone species: toward an operational concept for marine biodiversity conservation

> > AUDREY VALLS, 1.5 MARTA COLL, 2.3.4 AND VILLY CHRISTENSEN¹

Climate-driven changes in functional biogeography of Arctic marine fish communities

André Frainer^{a, s}, Raul Primicerio^a, Susanne Kortsch^a, Magnus Aune^b, Andrey V. Dolgov^z, Maria Fossheim^d, and Michaela M. Aschan^a

*Norwegian College of Fishery Science, UiT The Arctic University of Norway, 9037 Troma, Norway, *Akvaplan-Niva, Framenteret, 5296 Troma, Norway, *Kripovich Polar Research institute of Marine Fisheries and Oceanography PRIKOL 183038 Mumansk, Rusia, and *Institute of Marine Research (IMRL 5294 Troma), Norway

Edited by Nits Ox. Stenseth, University of Osio, Osio, Norway, and approved September 26, 2017 (received for review April 12, 2017)

© Casanave Daniel

Can we use ecosystem models to address the overall resilience of our MareFrame systems?

Can we use ecosystem models to address the overall resilience of our MareFrame systems?

EcoBase provides a series of open-access models:

- Iceland (Samb 1999)
- West Coast of Scotland (Morissette and Pitcher 2005)
- North Sea (Mackinson and Daskalov 2008)
- Barents Sea (Blanchard et al. 2002)
- Baltic Sea (Tomczak et al. 2012)
- Black Sea (Akoglu et al. 2014)
- Mediterranean (Tecchio et al. 2013)
- Bay of Biscay (Lasalle et al. 2012)

Can we use ecosystem models to address the overall resilience of our MareFrame systems?

- Maintain biodiversity and sustainable stocks while preserving ecosystems' structure and functions for the next generations.
- What are the main 3 species fished and what is their keystoness?
 - Very important species compared to the rest
 - Less important species compared to the rest

How do we reach that sustainable use of our marine resources?

- And how can we manage less resilient systems?
- We can still maintain healthier fisheries in more resilient systems, where complexity is more important

How do we reach that sustainable use of our marine resources?

• They are also the countries that don't catch too much keystone species

MAJOR THREATS on marine ecosystems Conservation targets

Different threats affect different species within our ecosystems

- Fishing & overfishing
- Climate change
- Marine traffic
 - Getting more and more important in the North
- Pollution
- Military
 - Sonar, explosions...
- Human constructions
 - Drilling, pilling, windmills, ports...
- Oil & Gas

These effects are CUMULATIVE

TARGET UMBRELLA & KEY SPECIES

What about our own resilience to this? The future of our ressources? Integrated approach = COLLABORATION

Fisherman

© Uderzo

Ecosystem-based fisheries management involves a certain level of **resilience** at the ecosystem level, but should also be linked to the **socio-economic** systems that depend on these marine resources.

EDUCATION

COLLABORATION Across borders

SCIENCE by itself will not solve everything

	Tout compte fait, nous ne som- mes guère beaucoup plus avancés. En effet	© Hergé
1	2	3
LEARNING Observe, collect data, analyze, create knowledge	EXPERTISE shaping our knowledge for a specific case	ACTIONS Solutions, politics, economics, education COMMUNICATE!

Be that link between science and "the real world"

© Hergé

Best ways to be resilient It's about optimism

- How to ensure the resilience of these exploited ecosystems to safeguard a sustainable future for oceans and their users?
- Doom and gloom don't work anymore;
- Share SUCCESS STORIES
- Inspiration
- SOLUTIONS; not problems
- HOPE

UiT

THE ARCTIC UNIVERSITY OF NORWAY

MareFrame

THANK YOU!

Lyne.Morissette@uit.no Michaela.Aschan@uit.no

This project has receive funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 613571.